Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Huan Jing Ke Xue ; 43(6): 2831-2839, 2022 Jun 08.
Article in Chinese | MEDLINE | ID: covidwho-1876197

ABSTRACT

The Chinese government triggered the immediate implementation of a lockdown policy in China following the outbreak of the COVID-19 pandemic, leading to drastic decreases in air pollutant emissions. However, concentrations of PM2.5 and other pollutants increased during the COVID-19 lockdown over the Jing-Jin-Ji region compared with those averaged over 2015-2019, and two PM2.5 pollution events occurred during the lockdown. Using the ERA5 reanalysis data, we found that the Jing-Jin-Ji region during the COVID-19 lockdown was characterized by higher relative humidity, lower planetary boundary layer height, and anomalous updraft. These conditions were favorable for condensation and the secondary formation of aerosols and prevented turbulent diffusion of pollutants. Furthermore, we conducted sensitivity tests using the WRF-Chem model and found that ρ(PM2.5) increased by 20-55 µg·m-3(60%-170%) over the middle region of Jing-Jin-Ji during the COVID-19 lockdown due to changes in meteorological conditions. Furthermore, the enhanced aerosol chemistry and unfavorable diffusion conditions were identified as the key factors driving increases in PM2.5 concentrations during the lockdown. Planetary boundary layer height and relative humidity may become the important factors in forecasting PM2.5 pollution events over the Jing-Jin-Ji region under the background of emission reduction.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiology , Communicable Disease Control , Environmental Monitoring , Humans , Pandemics/prevention & control , Particulate Matter/analysis
2.
Atmospheric Chemistry and Physics ; 21(23):17995-18010, 2021.
Article in English | ProQuest Central | ID: covidwho-1559957

ABSTRACT

Photochemical pollution over the North China Plain (NCP) is attracting much concern. We usually view peroxyacetyl nitrate (PAN) as the second most important photochemical pollutant featuring high mixing ratios during warm seasons. Our observations at a background site in the NCP identified high PAN concentrations, even during haze events in autumn. The substantial increasing ratios of PAN, by 244 % and 178 %, over the morning hours (08:00–12:00 local time) on 20 and 25 October 2020 were 10.6 and 7.7 times larger than those on clean days. Polluted days are characterized by higher temperature, higher humidity, and anomalous southerly winds compared with clean days. Enhanced local photochemistry has been identified as being the dominant factor that controls the PAN increase in the morning at the rural site, as the time when prevailing wind turns to a southerly wind is too late to promote direct transport of PAN from the polluted urban region. By removing the effect of direct transport of PAN, we provide a quantitative assessment of net PAN chemical production rate of 0.45 ppb h-1 for the mornings of polluted days, also demonstrating the strong local photochemistry. Using observations and calculated photolysis rates, we find that acetaldehyde oxidation by hydroxyl radical (OH) is the primary pathway of peroxyacetyl radical formation at the rural site. Acetaldehyde concentrations and production rates of HOx (HOx= OH + HO2) on polluted days are 2.8 and 2 times as large as those on clean days, leading to a remarkable increase in PAN in the morning. Formaldehyde (HCHO) photolysis dominates the daytime HOx production, thus contributing to fast photochemistry of PAN. Our observational results suggest the cause of a rapid increase in PAN during haze events in autumn at a rural site of the NCP and provide evidence of important role of HCHO photolysis in secondary pollutants at lower nitrogen oxide emissions. This highlights the urgency of carrying out strict volatile organic compound controls over the NCP during the cold season and not just in summer.

3.
Geophysical Research Letters ; 47(19), 2020.
Article in English | CAB Abstracts | ID: covidwho-1263468

ABSTRACT

High levels of secondary air pollutants during COVID-19 in China have aroused great concern. In Beijing, measured daily mean peroxyacetyl nitrate (PAN) concentrations reached 4 ppb over the lockdown period (24 January to 15 February), whose averages were 2-3 times that before lockdown (1-23 January). The lockdown PAN levels also reached a high historical record based on our long-term measurements (2016-2019). Unlike ozone and PM2.5, PAN formation depends on less complex photochemistry between NOx and volatile organic compounds (VOCs), providing a novel approach to investigate the wintertime photochemistry during COVID-19. The GEOS-Chem simulations suggest a markedly enhanced photochemistry by a factor of 2 during the lockdown. Change of meteorology featuring with anomalous wind convergence under higher temperatures is the main reason for enhanced photochemical formation of PAN, while chemically nonlinear feedbacks also play a role. Our results suggest implementing targeted VOC emission controls in the context of increasing photochemical pollution over this complex polluted region.

4.
Zhongguo Huanjing Kexue = China Environmental Science ; 41(5):1985, 2021.
Article in English | ProQuest Central | ID: covidwho-1257861

ABSTRACT

The influence of meteorological conditions on the pollution processes was investigated in this study by analyzing the changes of air quality as well as the characteristics of two persistent heavy pollution episodes during the Coronavirus Disea se 2019(COVID-19) prevention(January 24 to February 29) of 2020 winter compared with the same period of 2015~2019. Cold air intensity in 2020 winter was weaker with the cold surges frequency decreased by 50%. Air temperature was 0.73℃ higher, and wind speed and mixed layer height were 17.8% and 32.5% lower, respectively. Relative humidity and dew point temperature increased by 60. 9% and 48.1%, respectively. Northerly wind frequency reduced 7.5% while both of southerly and easterly wind increased 6.0%. As shown above, all meteorological conditions in 2020 winter were significantly more favorable for air pollution than the same historical period. Moreover, two heavy pollution episodes(January 24~29 and February 8~14) lasted for 59 and 75 hours were analyzed. At the cumulative stage, regional transport that can be divided into east and south channel greatly affected PM2.5, with the contribution of 70% and 58% for two episodes. By contrast, the contribution of local pollution was 67% and 48%, respectively, indicating the increased proportion of hygroscopic growth and secondary generation in the maintenance and aggravation stages. Under the meteorological background of "high humidity and high atmospheric stability", the combined effects of atmospheric vertical dynamics and horizontal convergence accumulated PM2.5 and water vapor in Beijing plain and prevented them from spreading beyond the boundary layer. Further bidirectional feedback between increased pollutants and meteorological factor s in stable boundary layer resulting in aggravation of pollution. According to EMI index, meteorological conditions during the epi demic prevention in 2020 winter caused an increase of 70.1% in PM2.5 concentration compared to pre-COVID-19. Emissions reduction caused by emergency measures for COVID-19 lockdown offset 53% of the adverse impact induced by meteorological conditions. As for the two episodes in 2020 winter, EMI was 26.9% and 19.7% larger than the average of other nine episodes in the correspond ing period of 2015~2019, and PM2.5 concentration was basically unchanged or slightly reduced. Overall, if the current social emission level is not changed, emission reduction caused by city blockade under special circumstances can only partially reduce the pollution concentration, however, cannot completely offset the adverse impact of meteorological conditions.

5.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: covidwho-1112035

ABSTRACT

Surface ozone is a severe air pollution problem in the North China Plain, which is home to 300 million people. Ozone concentrations are highest in summer, driven by fast photochemical production of hydrogen oxide radicals (HOx) that can overcome the radical titration caused by high emissions of nitrogen oxides (NOx) from fuel combustion. Ozone has been very low during winter haze (particulate) pollution episodes. However, the abrupt decrease of NOx emissions following the COVID-19 lockdown in January 2020 reveals a switch to fast ozone production during winter haze episodes with maximum daily 8-h average (MDA8) ozone concentrations of 60 to 70 parts per billion. We reproduce this switch with the GEOS-Chem model, where the fast production of ozone is driven by HOx radicals from photolysis of formaldehyde, overcoming radical titration from the decreased NOx emissions. Formaldehyde is produced by oxidation of reactive volatile organic compounds (VOCs), which have very high emissions in the North China Plain. This remarkable switch to an ozone-producing regime in January-February following the lockdown illustrates a more general tendency from 2013 to 2019 of increasing winter-spring ozone in the North China Plain and increasing association of high ozone with winter haze events, as pollution control efforts have targeted NOx emissions (30% decrease) while VOC emissions have remained constant. Decreasing VOC emissions would avoid further spreading of severe ozone pollution events into the winter-spring season.


Subject(s)
Air Pollution/analysis , Ozone/analysis , Particulate Matter/analysis , Seasons , Volatile Organic Compounds , COVID-19 , China , Crops, Agricultural , Environmental Monitoring , Environmental Pollution , Humans , Nitrogen Oxides/chemistry , Pandemics , Public Health
6.
Geophysical Research Letters ; n/a(n/a):e2020GL089623, 2020.
Article | Wiley | ID: covidwho-766013

ABSTRACT

Abstract High levels of secondary air pollutants during COVID-19 in China have aroused great concern. In Beijing, measured daily mean peroxyacetyl nitrate (PAN) concentrations reached 4 ppb over the lockdown period (01/24?02/15), whose averages were 2?3 times that before lockdown (01/01?01/23). The lockdown PAN levels also reached a high historical record based on our long-term measurements (2016?2019). Unlike ozone and PM2.5, PAN formation depends on less complex photochemistry between NOx and volatile organic compounds (VOCs), providing a novel approach to investigate the wintertime photochemistry during COVID-19. The GEOS-Chem simulations suggest a markedly enhanced photochemistry by a factor of 2 during the lockdown. Change of meteorology featuring with anomalous wind convergence under higher temperatures is the main reason for enhanced photochemical formation of PAN, while chemically nonlinear feedbacks also play a role. Our results suggest implementing targeted VOC emission controls in the context of increasing photochemical pollution over this complex polluted region.

SELECTION OF CITATIONS
SEARCH DETAIL